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Abstract: We analyze flavor constraints in the littlest Higgs model with T-parity. In

particular, we focus on neutral meson mixing in the K, B, and D systems due to one

loop contributions from T-parity odd fermions and gauge bosons. We calculate the short

distance contributions to mixing for a general choice of T-odd fermion Yukawa couplings.

We find that for a generic choice of textures, a TeV scale GIM suppression is necessary

to avoid large contributions. If order one mixing angles are allowed in the extended flavor

structure, the mass spectrum is severely constrained, and must be degenerate at the 1-5%

level. However, there are still regions of parameter space where only a loose degeneracy

is necessary to avoid constraints. We also consider the Bs system, and identify a scenario

in which the mixing can be significantly enhanced beyond the standard model prediction

while still satisfying bounds on the other mixing observables. We present both analytical

and numerical results as functions of the T-odd fermion mass eigenvalues.
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1. Introduction

The mechanism of electroweak symmetry breaking (EWSB) will presumably be revealed

in the coming years through a combination of LHC and ILC data. It is expected that

embedded in the newly discovered physics will be an explanation of how this mechanism

remains stable under quantum corrections. Until this time, it is vital that we study the

different known field theoretical mechanisms of EWSB that stabilize the Higgs potential.

The little Higgs mechanism [1, 2] is a revival of composite Higgs models [3, 4] that

attempted to solve these issues. In these models, the Higgs is a pseudo-Goldstone boson

of approximate global symmetries that are added on to the standard model (SM). In the

little Higgs mechanism, the electroweak scale is stabilized against quadratically divergent
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corrections by the manner in which perturbative couplings break the global symmetries. In

the simplest models, the Higgs mass receives no quadratically divergent quantum correc-

tions until two loop order, although models with a larger symmetry structure can postpone

these corrections to higher loop order [1].

The most compact implementation of the little Higgs mechanism is known as the

littlest Higgs model [5]. In this model, the SM is enlarged to incorporate an approximate

SU(5) global symmetry. This symmetry is broken down to SO(5) spontaneously, though

the mechanism of this breaking is left unspecified. The Higgs is an approximate Goldstone

boson of this breaking.

While the earliest littlest Higgs models have issues with low energy constraints [6],

recent studies have shown that this structure is still possible if one adds a discrete Z2

symmetry to the model [7]. Known as T-parity, this symmetry forbids the couplings which

led to stringent electroweak precision and compositeness bounds in the original littlest

Higgs model.

A consistent and phenomenologically viable littlest Higgs model with T-parity requires

the introduction of “mirror fermions” [8]. For each new SM doublet, there must be another

doublet which has the opposite T-parity eigenvalue. These mirror fermions are required to

cut off otherwise large four-fermion operators constrained primarily by LEP, and Drell-Yan

processes [9], but they also open up a new flavor structure in the model. From studies of

supersymmetry and other models of new physics, it is known that new flavor structure at

the TeV scale is quite stringently constrained [10]. This is primarily due to the presence, in

the SM, of a GIM mechanism [11]. The lightness of the SM fermions, coupled with the near

diagonal texture of the CKM matrix, strongly suppress flavor and CP violating amplitudes,

pushing them well below their naive dimension analysis (NDA) estimated values. In the

absence of a TeV scale GIM mechanism, new contributions to neutral meson mixing and

rare decays are often many orders of magnitude larger than the SM contributions [12, 13].

Neutral meson mixing, CP violation, and rare decays have been tested experimentally

through a variety of different observables, and are not substantially different than expec-

tations derived from SM calculations. Therefore we expect there to be very little freedom

in the new flavor sector. In this paper, we study the flavor constraints on the extended

T-odd fermion sector of the littlest Higgs model with T-parity. Specifically, we consider

constraints from neutral meson particle anti-particle mixing, leaving rare decays for future

study.

In section 2, we outline the conventions used to derive the Feynman rules relevant to

flavor physics. In section 3, we discuss how we approach the process of diagonalizing the

action to the mass eigenbasis, and identify the new parameters which describe the new

sources of flavor mixing and CP violation. In section 4, we outline the calculations for

neutral meson mixing in the SM. In section 5, the contributions to neutral meson mixing

involving the T-odd fields is presented. Section 6 contains a numerical analysis of the

bounds on the parameters describing the T-odd fermion sector, and an analysis of Bs

mixing. We conclude in section 7. In the appendix, we give the relevant Feynman rules,

as well as the formulas which arise from calculating the one loop contributions to flavor

changing operators.
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2. The model

The littlest Higgs model [5] is the most compact way of extending the SM to include a

collective symmetry breaking structure that protects the Higgs mass. In the littlest Higgs

model, the theory is approximately invariant under SU(5) global symmetry transforma-

tions. A scalar VEV of an SU(5) symmetric tensor Σ spontaneously breaks this SU(5)

down to SO(5) at a scale f . This scale is presumed to be O(1 TeV). The Higgs boson is

one of the Goldstone bosons associated with this breaking. An [SU(2) × U(1)]2 subgroup

embedded in the global SU(5) is gauged, and after Σ gets a VEV, this gauge symmetry is

reduced to the SM SU(2)L ×U(1)Y . Perturbative couplings in the model break the SU(5)

global symmetry explicitly, and quantum corrections involving these interactions gener-

ate masses and non-derivative couplings for the Goldstone fluctuations, rendering them

pseudo-Goldstone bosons.

The Higgs mass is protected from quadratic divergences at the one-loop level due to the

way in which perturbative couplings are introduced. Any single coupling preserves at least

one of two overlapping SU(3) subgroups of the full SU(5) global symmetry. Under these

SU(3) subgroups, the Higgs is still an exact Goldstone boson. The VEV which breaks the

SU(5) softly breaks these SU(3) symmetries, and thus generates logarithmically divergent

contributions to the Higgs mass at one loop. Amplitudes involving perturbative couplings

only generate a quadratically divergent contribution at two loop order. The value for the

Higgs mass obtained by NDA arguments is then suppressed relative to the breaking scale

f by a loop factor.

The effective action is parametrized by a non-linear sigma model. Only the Goldstone

bosons of the SU(5) breaking are included in the low energy effective theory, and the way

in which the theory is linearized, or UV completed, is left ambiguous. In terms of these

Goldstone fields, the symmetric tensor Σ can be expressed as:

Σ = e2iΠ/fΣ0. (2.1)

The “pion” matrix Π contains the Goldstone degrees of freedom, and Σ0 is the VEV of Σ:

Σ0 =




0 0 0 1 0

0 0 0 0 1

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0




.

To implement the collective symmetry breaking structure, the gauge generators are

embedded in the SU(5) global symmetry such that any given generator commutes with an

SU(3) subgroup of the SU(5) global symmetry:

Qa
1 =




σa/2 0 0

0 0 0

0 0 0


 , Y1 = diag(3, 3,−2,−2,−2)/10
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Qa
2 =




0 0 0

0 0 0

0 0 −σa∗/2


 , Y2 = diag(2, 2, 2,−3,−3)/10 . (2.2)

The Q1 and Y1 generators commute with the SU(3)2 subgroup of SU(5) whose generators

occupy the lower right hand corner. The Q2 and Y2 generators similarly commute with the

SU(3)1 subgroup in the upper left.

The VEV Σ0 breaks the extended gauge group [SU(2) × U(1)]2 down to the SM elec-

troweak SU(2)L × U(1)Y , leading to the broken combinations acquiring masses given to

lowest order in v/f by

MWH
= gf, MZH

= gf, MAH
=

g′f√
5
. (2.3)

The pseudo-Goldstone bosons of the SU(5) breaking then decompose into representations

of the electroweak gauge group as follows:

10 ⊕ 30 ⊕ 21/2 ⊕ 31. (2.4)

The 10 and 30 are eaten in the Higgsing of the extended gauge sector down to the SM

gauge group.

The pion matrix, with the Higgs doublet and complex triplet φ identified along with

the eaten Goldstone bosons, is given by

Π =




−ω3/2 − η/
√

20 −ω+/
√

2 −iπ+/
√

2 −iφ++ −iφ+

√
2

−ω−/
√

2 ω3/2 − η/
√

20 v+h+iπ0

2 −iφ+

√
2

−iφ0+φ0
P√

2

iπ−/
√

2 (v + h − iπ0)/2
√

4/5η −iπ+/
√

2 (v + h + iπ0)/2

iφ−− iφ−

√
2

iπ−/
√

2 −ω3/2 − η/
√

20 −ω−/
√

2

iφ−

√
2

iφ0+φ0
P√

2
v+h−iπ0

2 −ω+/
√

2 ω3/2 − η/
√

20




.

(2.5)

In the model we consider, a T-parity Z2 discrete symmetry is enforced to make the

model consistent with electroweak precision tests. This Z2 is derived from an auto-

morphism of the gauge groups which exchanges the [SU(2) × U(1)]1 gauge group with

[SU(2) × U(1)]2. If the Lagrangian is made invariant under such a transformation, tree

level electroweak precision constraints are avoided [7, 14]. This can be achieved by setting

couplings associated with the two gauge groups to be equal, and also imposing that the

particle content of the model is symmetric under this transformation. If the symmetry is

made exact, the lightest T-parity odd particle is stabilized, and is a dark matter candi-

date [7, 16]. The heavy gauge bosons are odd under T-parity, and so tree level four-fermion

operators involving SM fermions are also forbidden.

Under T-parity, the Goldstone boson matrix transforms as

T : Π → −ΩΠΩ (2.6)

where Ω = diag(1, 1,−1, 1, 1). This transformation law can be derived from the requirement

that the kinetic term for Σ be invariant under exchange of the two sets of gauge bosons.

This transformation law for the Goldstone bosons ensures that the SU(2)L triplet is odd
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under T-parity, and that there is thus no trilinear coupling of the triplet to the SM Higgs

doublet. This forbids a small VEV being generated for the triplet which would otherwise

cause phenomenologically constrained violations of the custodial SU(2) symmetry of the

SM Higgs potential [6].

2.1 Fermion content

We will give now in detail the structure of the fermion sector of the model. To avoid

compositeness constraints and simultaneously implement T-parity, it is necessary to dou-

ble the SM fermion doublet spectrum [8]. For each SM SU(2)L doublet, a doublet un-

der SU(2)1 and one under SU(2)2 are introduced. The T-parity even combination is

associated with the SM SU(2)L doublet while the T-odd combination is given a mass

of order the breaking scale, f . The fermion doublets ψ1, ψ2 can be embedded into in-

complete representations Ψ1,Ψ2 of SU(5), and the field content can be expressed as fol-

lows:

Ψ1 =




ψ1

0

0


 , Ψ2 =




0

0

ψ2


 , Ψ̃ =




ψ̃R

χR

ψR


 , (2.7)

where Ψ̃ is a T-odd SO(5) multiplet which transforms non-linearly under the global SU(5).

The transformation laws for Ψ1 and Ψ2 under SU(5) are as follows:

Ψ1 → V ∗Ψ1 Ψ2 → V Ψ2, (2.8)

where V is an SU(5) transformation. The action of T-parity on the multiplets takes

Ψ1 → −Σ0Ψ2 and Ψ̃ → −Ψ̃. It is possible to extend the gauge and global symmetry struc-

ture of the model to include new T-even gauge bosons and scalars, and in some of these

extensions, all of the fermions that are introduced can be made to transform linearly [8].

The flavor changing processes that we calculate are in fact present in all of these models.

We note however that in these extensions, there may be new flavor changing processes

involving the extra T-even fields that give additional contributions. We choose to work

with the model that has the simplest gauge and global symmetry structure, and which is

likely the least constrained.

The T-parity even combination of ψ1 and ψ2 are the SM electroweak quark and lepton

doublets, while the T-odd combination is given a Dirac mass with the ψR of the Ψ̃ SO(5)

representations through the following Yukawa interaction:

κf
(
Ψ̄2ξΨ̃ + Ψ̄1Σ0Ωξ†ΩΨ̃

)
+ h.c. (2.9)

The insertion of ξ = eiΠ/f is necessary to make these terms invariant under SU(5) rota-

tions [7, 15]. The T-odd combination of left-handed doublets gains a mass (before EWSB)

equal to
√

2κf . After EWSB, a small mass splitting between the T-odd up and down-type

quarks is induced, and the masses are given by

md− =
√

2κf
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mu−
=

√
2κf

(
1 − 1

8

(
v

f

)2

+ · · ·
)

. (2.10)

The remaining degrees of freedom in Ψ̃ are given masses with another non-linearly

transforming multiplet. A spinor multiplet of SO(5) could be introduced. This multiplet

includes two SU(2)L singlets, and one doublet. These could marry with χR and ψ̃R, and

then one more singlet would be necessary to lift the entire spectrum.

In our analysis, we assume that the mass of the doublets ψ̃R are much larger than the

breaking scale f , and the additional singlets χR have masses of ∼ 5f . They are necessary

to cancel two loop quartic divergences to the Higgs mass, but are otherwise allowed to be

decoupled from the spectrum [16]. At 5f , the mass is large enough to have only negligible

effects on low energy phenomenology, but low enough to keep the Higgs mass small. The

ψ̃R doublet is necessary only to cancel a divergence proportional to g′2, which is relatively

small, so it is fine for its mass to be rather large (perhaps 10 TeV). Increasing its mass also

decouples its effects on flavor physics, as the masses are not due to the Yukawa coupling κ,

and are simple Dirac masses. The flavor changing couplings of the χR singlets arise only at

order v/f , and thus the effects are suppressed relative to those we calculate. In summary,

including these fermions in the flavor analysis is a higher order effect. We note that if the

ψ̃R doublet is taken to be light, then its flavor effects arise through box diagrams where

components of the complex triplet φ run in the loop.

In order to prevent against large contributions to the Higgs mass from one loop

quadratic divergences, the third generation light Yukawa interaction must be modified

so that it incorporates the collective symmetry breaking structure. In order to do this, the

Ψ1 and Ψ2 multiplets for the third generation must be completed to representations of the

SU(3)1 and SU(3)2 subgroups of SU(5). These multiplets are

Q1 =




q1

t′1
0


 , Q2 =




0

t′2
q2


 , (2.11)

where Q1 and Q2 obey the same transformation laws under T-parity and the SU(5) sym-

metry as do Ψ1 and Ψ2. It should be noted that the quark doublets are embedded such

that

qi = −iσ2

(
ti
bi

)
. (2.12)

One must also introduce additional singlets t′1R and t′2R which transform under T-parity

as

t′1R → −t′2R (2.13)

so the top sector can be implemented in the following T-parity invariant way [7, 8]

Lt =
1

4
λ1fεijkεxy

[
(Q̄1)iΣjxΣky − (Q̄2Σ0)iΣ̃jxΣ̃ky

]
u3R

+λ2f(t̄′1t
′
1R + t̄′2t

′
2R) + h.c. (2.14)
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This Yukawa interaction generates a mass for the top quark given by

mtop =
λ1λ2v√
λ2

1 + λ2
2

, (2.15)

while the orthogonal T-even combination (T+), and the T-odd combination of t′1 and t′2,
(T−) acquire masses given by

mT+
=

√
λ2

1 + λ2
2f, and mT−

= λ2f. (2.16)

The T-odd combination of the q1 and q2 doublets get their mass from the same Yukawa

coupling as the other T-odd doublets discussed earlier. The other two generations of SM

up-type quarks acquire their mass through similar terms, though with the t′ quarks missing

from the Q1 and Q2 multiplets since the Yukawa couplings are small and these quadratic

divergences are suppressed. The T− quark only has sizeable “flavor changing” interactions

with the SM top quark mass eigenstate and the AH [16], and so it does not contribute to

any of the processes we study.

3. T-odd flavor mixing

Before beginning a discussion of the T-odd fermion mass sector, we briefly review the

process as it works in the SM [17]. The Yukawa sector generates mass matrices for the

three up-type quarks given by M i
uj after EWSB which is diagonalized by two unitary

matrices, U and V :

(Mu)ij = (Vu)ik(M
D
u )kl (U

†
u)lj (3.1)

The gauge eigenstates are then expressed in terms of (the primed) mass eigenstates by

ui
L = (Vu)iju

′j
L ui

R = (Uu)iju
′j
R. (3.2)

A similar procedure applies to the down-type quark mass matrix. Much of the information

contained in the diagonalization of the mass matrices is redundant when one looks at SM

amplitudes for cross sections. The cross-over to the mass eigenbasis leaves most of the

gauge interaction portion of the Lagrangian invariant. It is only the weak interactions

which couple the T3 = 1/2 and T3 = −1/2 sectors that are affected:

g√
2

[
ūi 6W+PLdi + d̄i 6W−PLui

]
=

g√
2

[
ū′

i(V
†
u )ij 6W+PL(Vd)

j
kd

′k + d̄i(V
†
d )ij 6W−PL(Vu)jku

′k
]

(3.3)

In the SM, the only observable rotation is the combination

(V †
u )ik(Vd)

k
j ≡ (VCKM)ij . (3.4)

This is no longer necessarily the case when one introduces additional fermions which couple

to the SM.

The mass eigenbasis in the T-odd fermion sector is not necessarily aligned with the SM

fermion sector. These additional mixings are a source of flavor changing processes that are

the focus of this paper. The interaction that gives the T-odd doublets their mass, eq. (2.9),

– 7 –
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can be extended to include generational mixing:

κi
jf

(
Ψ̄2iξΨ̃

j + Ψ̄1iΣ0Ωξ†ΩΨ̃j
)

+ h.c. (3.5)

In analogy with the CKM transformations, the resulting mass matrix
√

2fκi
j is diagonalized

by two U(3) matrices:

κi
j = (VH)ik(κD)kl (U

†
H)lj . (3.6)

VH acts on the left handed fields while UH acts on the right handed Ψ̃ fields. We note that

these matrices are identical for the up and down-type T-odd fermions, since the resulting

Dirac mass terms are SU(2)L symmetric.

The T-odd gauge boson interactions arising in fermion kinetic terms are given quali-

tatively by

gQ̄−i 6A−Qi
+ + gQ̄+i 6A−Qi

−, (3.7)

where the A− and Q− are the T-odd gauge bosons and fermions with mass ∼ f . The

Q+ are the T-even eigenstates. One can further rotate this T-parity eigenbasis into the

mass eigenbasis, where flavor mixings in both the T-odd and T-even sectors are taken

into account. Identifying the mass eigenstates with a H and L index for heavy and light,

respectively, these interactions can be re-expressed as

gQ̄HiV
†i
Hj 6AH

(
(Vu)jku

k
L

(Vd)
j
kd

k
L

)
+ g

(
ūLk(V

†
u )ki

d̄Lk(V
†
d )ki

)
6AHV i

HjQ
j
H , (3.8)

where

Qi
H =

(
ui

H

di
H

)
.

The rotation matrix VH is in U(3), and operates on the flavor indices of the left handed

T-odd fermions. In analogy with the CKM matrix then, the rotations relevant to flavor

physics are

(V †
H)ik(Vu)kj ≡ (VHu)ij , (V †

H)ik(Vd)
k
j ≡ (VHd)

i
j . (3.9)

Note that the two matrices are related through the SM CKM matrix:

V †
HuVHd = VCKM. (3.10)

This is an important result, as it implies that one cannot completely turn off the new

mixing effects except with a universally degenerate mass spectrum for the T-odd doublets.

For example, if VHd is set to be the identity, then V †
Hu = VCKM. 1

There is a subtlety here involving the T-even partner of the top quark which is respon-

sible for canceling the top quark’s quadratically divergent contribution to the Higgs mass.

As it is only inserted in the top quark sector, it explicitly breaks flavor symmetries in a

1We note that the mixing between the T 3 = +1/2 eigenstate and the singlet which is responsible for the

cancelation of top quark quadratic divergence actually extends VHu to a 4× 3 matrix, and VCKM to a 3× 4

matrix. [18, 32] This mixing is a v2/f2 effect, and so we neglect it in our analysis, leaving VCKM as a 3× 3

matrix. In either case, the relations above still hold.
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way such that the symmetry cannot be restored through a spurion analysis. If we were to

assume that the up-type Yukawa couplings are flavor diagonal, then the top quark diver-

gence is canceled as in the littlest Higgs model. From this starting point, where Vu = 1,

VHu = V †
H , and VHd = V †

HVd, and Vd = VCKM. Because there is no symmetry in place

which forbids such off-diagonal top-Yukawa elements, this perhaps seems a bit unnatural.

We note that the flavor symmetry could easily be restored by completing all three

generations of the SU(2)1 and SU(2)2 doublet quarks to be SU(3)1 and SU(3)2 triplets.

Doing so leads to a somewhat more natural picture of how the top quark divergence is

canceled, but at the expense of introducing 4 additional particles (a T-even and T-odd

partner for each of the two remaining up-type quarks). The effects of these new quarks

on flavor physics and EWP would be vanishingly small, since, as found in [14, 18], these

effects are approximately proportional to mf 4
SM/m4

T+
, where mf

SM is the mass of either the

up or charm quark. The new T− flavor contributions would scale in the same way. Since

the masses for the first two generations are quite small, this effect is extremely suppressed.

Depending on the mass of these new particles, however, the collider phenomenology [16, 19 –

22] could be quite different. For the remainder of this analysis, we assume that the flavor

symmetry is only explicitly violated by mass terms, and that the fermions come in SU(3)i
multiplets, and that therefore, Vu is free to take on any value. The earlier model can easily

be obtained from this one by picking specific mass textures, and decoupling the partners

of the lighter up-type quarks.

Beyond the SM, there are three new rotation angles, and one new CP violating phase,

as we explain here. There are two unitary matrices which show up in observables, VHu,

and VHd. These have 3 rotations each, and 6 phases each. There are 6 quark fields which

transform under SU(2)1, and 6 under SU(2)2. Each set of 6 quark fields can absorb 5 phases

(an overall phase in each sector is unobservable). What remains are 6 total rotations, and

2 CP violating phases. One combination of VHu and VHd gives the SM CKM matrix, which

has 3 rotations and 1 phase. We then parametrize VHd the same way as we do the CKM

matrix, but with new angles θd
12, θd

23, θd
13, and phase δd

13:

VHd =




cd
12c

d
13 sd

12c
d
13 sd

13e
−iδd

13

−sd
12c

d
23 − cd

12s
d
23s

d
13e

iδd
13 cd

12c
d
23 − sd

12s
d
23s

d
13e

iδd
13 sd

23c
d
13

sd
12s

d
23 − cd

12c
d
23s

d
13e

iδd
13 −cd

12s
d
23 − sd

12c
d
23s

d
13e

iδd
13 cd

23c
d
13


 . (3.11)

The matrix VHu can then be extracted from the relation VHu = VHdV
†
CKM. With this

parametrization, we can analyze all of the physical degrees of freedom in the model.

Throughout our analysis, we use for the SM CKM matrix the PDG best fit angles [23]

s12 = 0.2243 ± 0.0016, s23 = 0.0413 ± 0.0015, s13 = 0.0037 ± 0.0005, δ13 = 1.05 ± 0.25.

(3.12)

There are also interaction terms containing a T-odd Goldstone boson, a T-odd fermion,

and a SM fermion. These arise from expanding the T-odd Yukawa interactions in eq. (3.5)

in the mass eigenbasis. Similarly, these only involve the rotations VHu and VHd. The

structure of the gauge invariant kinetic terms for the non-linearly transforming multiplets

ensures that there are no vector currents involving both a SM fermion and a member of
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the right handed Ψ̃ multiplet. Similarly, the interactions with the eaten T-odd Goldstone

bosons coming from eq. (2.9) can only involve left-handed SM fermions and a member of

the Ψ̃ multiplet. In table 1, in the appendix, we give the Feynman rules relevant to flavor

physics.

4. Mixing in the standard model and beyond

The state of the art theory predictions for mixing in the K and Bd systems agree with

experimental results up to theoretical errors in long distance effects and QCD corrections.

In D mixing, there is only an upper bound. In this section, we give a very brief summary

of the SM predictions for neutral meson mixing. For more detailed discussions see [24 – 28].

We also comment on the relevance of each system to our study of the littlest Higgs model

with T-parity.

4.1 Standard model effective Hamiltonian

The lowest order SM contribution to the effective Hamiltonian that governs neutral K

meson mixing is given by [29]

HSM
eff =

G2
F

16π2
M2

WL

∑

ij

λiλjF (xi, xj ;MWL
)(s̄d)(V −A)(s̄d)(V −A), (4.1)

where xi = m2
i /M

2
WL

, mi and mj are the masses of the quarks in the loop, and the λi are de-

fined as functions of CKM matrix elements: λi = V ∗is
CKMV id

CKM The function F (xi, xj ;MWL
)

is given in the ’t Hooft-Feynman gauge in the appendix. This function is finite in the

’t Hooft-Feynman gauge, but divergent in unitary gauge. When summing over the dif-

ferent flavors, the gauge dependence cancels after imposing unitarity of the CKM matrix

through the relation λu = −λc − λt. The final form of the effective Hamiltonian after this

substitution is given by

HSM
eff =

G2
F

16π2
M2

WL

[
λ2

c η1 S̃0(xu, xc) + 2λcλtη3 S̃0(xu, xc, xt) + λ2
t η2 S̃0(xu, xt)

]

×(s̄d)(V −A)(s̄d)(V −A), (4.2)

where

S̃0(xi, xj) = F (xi, xi ;MWL
) − 2F (xi, xj ;MWL

) + F (xj , xj ;MWL
)

S̃0(xi, xj , xk) = F (xi, xi ;MWL
) − F (xi, xj ;MWL

) − F (xi, xk ;MWL
) + F (xj , xk ;MWL

),

(4.3)

and the ηi are QCD corrections. We will see a similar structure for the contributions

to the effective Hamiltonian from the T-odd fermions. In practice, for the SM particles

the masses of the lighter particles are taken to be zero in the formula above, leading to

simplified expressions. For example, in K and B mixing, taking mu = 0 gives the standard

functions:

S0(xc, xt) = S̃0(0, xc, xt), S0(xt) = S̃0(0, xt). (4.4)
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The effective Hamiltonians for mixing in the other neutral meson systems can easily

be obtained from eq. (4.2) by altering the λi, the four-quark operator, and the ηi. For

example, to get the result for Bd mixing, each occurrence of s should be replaced by b, and

the η’s that correspond to the B system should be inserted.

4.2 Physical observables

We show here how to obtain the physical observables from the effective Hamiltonians. We

restrict our analysis to neutral meson mass splittings and εK . We comment on the relevance

of these observables to our analysis of T-parity flavor physics.

4.2.1 K0 − K̄0 mixing

We will use two observables from K0 − K̄0 Mixing: the mass difference ∆MK , and the

parameter εK , related to the real and the imaginary part of 〈K0|Heff |K̄0〉, respectively.

More specifically we have for ∆MK :

∆MK =
1

mK
Re 〈K0|Heff |K̄0〉. (4.5)

The SM prediction is

∆MK = Re

{
G2

F

6π2
F 2

KB̂KmKM2
WL

[
λ∗

c
2η1S0(xc) + λ∗

t
2η2S0(xt) + 2λ∗

cλ
∗
t η3S0(xc, xt)

]}
,

(4.6)

where FK and mK are the K-meson decay constant and mass, respectively. B̂K is an order

one non-perturbative “bag” parameter.

The theoretical prediction for εK is given by

εK ≈ exp(iπ/4)

2
√

2∆MK mK

Im 〈K0|Heff |K̄0〉, (4.7)

and the SM prediction is then

εk =
G2

FF 2
KmKM2

WL

6
√

2π2 ∆MK

B̂KIm λt {Re λc [η1S0(xc) − η3S0(xc, xt)] − Re λtη2S0(xt)} exp(iπ/4) .

(4.8)

K mixing imposes some of the tightest bounds on the T-odd fermion spectrum. Bounds

on the mass splitting of the neutral mass eigenstates (or, equivalently, the mixing frequency

of the CP eigenstates) impose constraints on the first two generations of T-odd fermions,

as we will show in section 6. In addition, if there is a CP violating phase in VHd, then there

are new physics contributions to the εK observable, the measure of indirect CP violation in

K decays. As we show in section 6, this observable is often the most sensitive to little Higgs

physics. This is in analogy with the “εK problem” in supersymmetry (see for example [13]).

In addition, it would be interesting to study the ε′ observable, which is the measure of direct

CP violation in K decays. We leave this for future work.
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4.2.2 B0
q − B̄0

q mixing

In our analysis we will also discuss the mass differences in the B0
d−B̄0

d and B0
s−B̄0

s systems.

In terms of low energy matrix elements, these mass splittings are given by

∆MBq =
1

mBq

∣∣〈B0
q |Heff |B̄0

q 〉
∣∣ . (4.9)

For neutral B mesons the functional form is identical to the effective Hamiltonian for K

mixing, although with new λi, ηi, and bag parameters. The hierarchy of the CKM matrix

elements, however, allows for simplification of the effective Hamiltonian, so that to an

excellent approximation, it depends only on S0(xt). The SM prediction is therefore

∆MBq =
G2

F

6π2
ηBmBq

(
B̂BqF

2
Bq

)
M2

WL
S0(xt)|λ∗2

t | . (4.10)

Neutral B mixing is particularly interesting due to the large amount of progress cur-

rently being made both on experimentally constraining b-quark physics, and on pinning

down the theoretical SM predictions for B meson observables. A particularly exciting

system to study from the perspective of current developments is the Bs system.

In our analysis, the Bd neutral meson mass splitting provides constraints that are

complementary to those from the K system. Because the Bd system is more sensitive to

physics in the third generation, it generally imposes stronger bounds on the third generation

T-odd fermion doublet than the K system alone.

4.2.3 D0 − D̄0 mixing

For D meson mixing no mass splitting has yet been observed. The SM short distance

contribution to the D mixing effective Hamiltonian is extremely suppressed, due to GIM

and CKM factors. There are potentially larger long distance contributions, but these

are not well understood due to sensitivity to low energy strong dynamics. The current

experimental bound is given by [23]

|mD0
1
− mD0

2
| < 4.6 · 10−14 GeV, CL = 95%. (4.11)

In our analysis, we assume that the new physics contribution dwarfs any SM contributions.

In our analysis, the D system provides an important counterweight in constraining the

extended fermion sector. Unlike the K and B systems, the T-odd fermion contributions to

mixing come from the up-type diagonalization matrix, VHu. Without the current experi-

mental upper bound on the D meson mass splitting, the constraints on the T-odd fermion

sector would be vanishing for VHd = 1. However, the relation V †
HuVHd = VCKM requires

that if VHd = 1, then V †
Hu = VCKM. If down-type quark mixing is suppressed by very small

off-diagonal elements, then up-type quark mixing is unavoidable.

5. Little Higgs contributions to neutral meson mixing

We now calculate the corrections to the relevant effective Hamiltonians in the littlest Higgs

model with T-parity. The dominant contributions arise from box diagrams which have
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+
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Figure 1: Box diagrams involving T-odd gauge bosons and scalars that contribute to particle

anti-particle mixing in the littlest Higgs model with T-parity. There are other diagrams, such as

those with two neutral scalars running in the loop. These, however, sum to zero. We show only the

classes of diagrams which contribute to the functions given in the appendix.

T-odd fermions running within the loop, along with T-odd gauge bosons. There are also

sub-dominant effects coming from the extended top sector of the model, which we briefly

discuss as well.

5.1 T-odd sector contribution

From the T-odd sector we get several new contributions to neutral meson mixing. These

contributions come from box diagrams that contain heavy gauge bosons and T-odd fer-

mions, and in general are suppressed by a factor of v2/f2. However, this suppression is

vastly overcome in most regions of parameter space due to the absence of a TeV scale GIM

mechanism. The diagrams can be classified according to the gauge boson running in the

loop: WH , ZH , and “mixed” ZH and AH . These are shown in figure 1. We have calculated

these diagrams both in the ’t Hooft-Feynman and the unitary gauge, and we now review

the results.

The diagrams with internal W±
H and charged Goldstone bosons give a contribution

to the effective Hamiltonian which has the same functional form as the SM calculation,

with some simple replacements. For the heavy neutral gauge bosons, ZH and AH , we have

apart from the WH-like diagrams, also “crossed” diagrams where the gauge bosons attach

to opposite vertices on one side of the box. After summing over the two types we find that

each class of diagrams, namely the “ZZ”, “AA”, and “ZA” diagrams, are independently

gauge invariant. We carried out the full calculation in both ’t Hooft-Feynman gauge and

unitary gauge, but gauge independence can be shown to hold in any Rξ gauge. A similar

phenomenon occurs in the SM for boxes that contain ZL and γ [30] (these diagrams do

not contribute to neutral meson mixing, of course). Furthermore, the contribution of the

diagrams containing neutral scalars vanishes after summing over the regular and crossed

diagrams. This effect can be traced back to the fact that the coupling of the eaten T-
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odd Goldstone bosons to the heavy and light fermions is purely left handed, and that the

momentum assignment on one of the fermion lines is in the opposite direction of fermion

number flow in the crossed diagrams.

The total contribution from the T-odd sector to neutral K mixing (neglecting QCD

corrections) is given by

Hodd
eff =

G2
F

64π2
M2

WL

v2

f2

∑

ij

λ′
iλ

′
j [F (yi, yj ;WH) + G(zi, zj ;ZH) (5.1)

+A1(zi, zj ;ZH) + A2(zi, zj ;ZH)] (s̄d)(V −A)(s̄d)(V −A).

The functions F , G, A1, and A2 correspond to the contributions of the “WW”, “ZZ”,

“AA”, and “ZA” diagrams, respectively. Their explicit form in ’t Hooft-Feynman gauge is

given in the appendix. In the above formula yi = m2
i /M

2
WH

and zi = m2
i /M

2
ZH

, which are

identical at lowest order in v/f . Ignoring the higher order effects of the WH − ZH mass

splitting, we replace yi with zi in the rest of the text. mi and mj are the masses of the

T-odd quarks in the loop, and the λ′
i are functions of VHd matrix elements: λ′

i = V ∗is
Hd V id

Hd

As in the SM calculation, we can present the result in a more compact way. Imposing

unitarity of VHd, we can re-write the effective Hamiltonian as:

Hodd
eff = (5.2)

=
G2

F

64π2
ηM2

WL

v2

f2

[
λ′2

3 R2(z1, z3) + 2λ′
2λ

′
3R3(z1, z2, z3) + λ′2

2 R2(z1, z2)
]
(s̄d)(V −A)(s̄d)(V −A),

where

R2(zi, zj) =
∑

M∈{F,G,A1,A2}
[M(zi, zi) − 2M(zi, zj) + M(zj , zj)]

R3(zi, zj , zk) =
∑

M∈{F,G,A1,A2}
[M(zi, zi) − M(zi, zj) − M(zi, zk) + M(zj , zk)] , (5.3)

and η parametrizes the effects of QCD corrections that will be discussed in more detail

below.

The effective Hamiltonians relevant to B and D mixing can easily by obtained from

eq. (5.3) by simply interchanging indices in the mixing parameters, λ′
i, and relabeling the

quarks in the four-fermion operator.

Interpreting these new contributions as shifts in physical observables is quite easy

through application of the same techniques used in the SM calculations. The only subtleties

that arise are involved with the QCD corrections.

Before moving on to examine the T-even contributions, it is instructive to look at an

approximate formula for the T-odd contributions to the effective Hamiltonian. In par-

ticular, if we go to the limit where the T-odd doublet spectrum is nearly degenerate, and

assume that the T-odd fermion masses are significantly larger than the T-odd gauge bosons

(κ À g), we find that eq. (5.1) reduces to the following form:

Hodd
eff ≈ 1

192π2f2

[
(δκ12 + δκ23)V

1d
HdV

∗1s
Hd + δκ23V

2d
HdV

∗2s
Hd

]2
(s̄d)(V −A)(s̄d)(V −A), (5.4)
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Figure 2: ∆St/S0(xt) versus xL for different values of f, f = 1 TeV (solid) and f = 2 TeV

(dashed). O(v4/f4) corrections are included to show the large xL behavior.

where δκ12 = κ22
D − κ11

D , and δκ23 = κ33
D −κ22

D . In this expression, it is easy to see the GIM

mechanism at work: the lowest order terms in the mass splitting expansion are at δκ2
ij .

5.2 Contributions from the T-even sector

There are also contributions to flavor changing diagrams coming from diagrams which

involve the T-even partner of the top quark, T+. These have been calculated in [18, 31, 32]

for the littlest Higgs model without T-parity, and the results from these calculations are

much the same as in the littlest Higgs model with T-parity, although some of the diagrams

in that model no longer exist due to certain couplings being forbidden by T-parity. For

example, in diagrams with T-even fermions running in the loop, there are no contributions

which involve the heavy T-odd gauge bosons.

The leading order O(v2/f2) contribution to the effective Hamiltonian that governs K

meson mixing from the T-even sector is given by

Heven
eff =

G2
F

16π2
M2

WL

[
λ2

cη1∆Sc + λ2
t η2∆St + 2λcλtη3∆Stc

]
(s̄d)VA

(s̄d)V −A, (5.5)

where

∆Sc = 0

∆St = −2
v2

f2
x2

L

(
S0(xt) − S0(xt, xT )

)

∆Sct = − v2

f2
x2

L

(
S0(xc, xt) − S0(xc, xT )

)
, (5.6)

and xT = m2
T+

/m2
WL

. The parameter xL is a function of the couplings in eq. (2.14):

xL =
λ2

1

λ2
1 + λ2

2

. (5.7)

These corrections arise from two effects. First, there are explicit new flavor changing

diagrams which involve the partner of the top quark, T+. In addition, the CKM matrix is

modified at order v2/f2 in the V ti
CKM elements.
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To obtain these relations, we have simply taken the limit of equal gauge couplings

required by T-parity in the equations in [18], and removed also the contributions from

diagrams that violate T-parity. Note that, because of those new conditions, imposing T-

parity makes the T-even contributions somewhat smaller than those in the littlest Higgs

model without T-parity.

For regions of xL ≥ 0.8, where λ1 > λ2, we have to also consider formally order

v4/f4 contributions, which increase linearly with xT . These contributions come from box

diagrams that contain two T-even partners of the top quark. The leading behavior of these

contributions is the same as that of the littlest Higgs model without T-parity, given by [18]

(∆St)TT ≈ xT

4

v4

f4
x4

L =
xt

4

v2

f2

x3
L

1 − xL
. (5.8)

In figure 2, we show the ratio ∆St/S0(xt) as a function of xL at order O(v4/f4),

where S0 is the SM contribution. In our analysis, we take xL = 0.5, which corresponds

to the point at which the T+ mass is at its minimum. This is also the point where the

contributions to the Higgs mass are minimized. For this ‘natural’ value of xL, these T-even

contributions are small (less than 6% of the SM contribution for f = 1 TeV), and can be

neglected.

Although T-even contributions could be very large in more fine-tuned regions of xL, we

note that xL cannot be arbitrarily close to 1, in order not to violate direct search bounds

on the T-odd top partner mass, mT−
= λ2f (as λ1 is increased, in order to hold the top

quark mass fixed, λ2 must decrease, lowering the T− mass). In addition, we want to keep

λ1 from entering the strong coupling regime. We leave a study which includes the effects

of large xL for future work.2

5.3 QCD corrections

So far the expressions we have presented did not include QCD corrections. For the SM con-

tributions these corrections usually suppress the short distance predictions. For example,

the numerical values for the QCD corrections to the SM contributions are given by

ηB = 0.55 ± 0.01, η1 = 1.32 ± 0.32, η2 = 0.57 ± 0.01, η3 = 0.47 ± 0.05 (5.9)

at NLO [28, 34 – 37]. It is therefore important to estimate these QCD effects, as they can

reduce the result by almost 50%. A full NLO analysis for the new physics contributions

would clearly be beyond the scope of this work, but as we will show below, we can account

for the bulk of these corrections by using the leading order (LO) result for η.

For the little Higgs model with T-parity we always match onto the same (V − A) ⊗
(V − A) operator. While the NLO value of the Wilson coefficient at the high scale µH

cannot be determined without a full one loop calculation, the anomalous dimension will

be the same as in the SM, as it depends only on the properties of the local operator. This

implies that we can immediately obtain η = αs(µH)
γ0
2β0 , valid at LO.

2Recently, new little Higgs models have been constructed in which the partner of the top-quark is odd

under T-parity [33]. In such models, these contributions could vanish. The flavor effects of the T-odd sector

that are the primary focus of our study, however, remain unchanged with this modification.
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We also need to address the issue of what to take for the high scale µH . There is no

unique answer to this question, of course, and the resulting scale dependance can only be

reduced by a full NLO calcualtion. One might assume that µH ∼ f is the most natural

choice, but as we will explain below, we choose for our study µh ∼ MML

• While the masses of WH and ZH are gf , the mass of AH is 4 times smaller: g ′f/
√

5,

which for f ∼ 1000 GeV is close to the top quark mass. Therefore for diagrams that

involve AH we should use a scale lower than f .

• The masses of the T-odd fermions are free parameters, so it is unclear which scale to

use when integrating them out. Furthermore, since they couple to the gluons, their

presence will lead to threshold effects which are functions of these masses and which

greatly complicate the calculation.

• Most importantly, the bulk of the QCD corrections result from running from the

weak scale to the hadronic scale. Since the variation of αs between the scales v and f

is rather small, neglecting these running and threshold effects is justified, considering

the other uncertainties. For example, in running up to f = 1000 GeV from MW ,

(ignoring threshold effects from T-odd fermions) the effect would only reduce η by

about 8%.

Considering these facts, and that there are uncertainties which would dominate these small

effects, the common value for the QCD corrections that we adopt is then:

η = (αs(mWL
))

γ0
2β0 = (αs(mWL

))6/23 ∼ 0.58 . (5.10)

In order to calculate the matrix element of the resulting effective Hamiltonian, we need to

parametrize the matrix element of the four quark operator. This calculation is precisely the

same as in the SM as it only relies on physics at the low scale, and so the bag parameters

are identical.

6. Results and constraints

In this section, we show our numerical bounds on the T-odd fermion spectrum for some

representative selection of textures for VHd. We first consider cases where VHu and VHd

are diagonal up to corrections that are of order the off-diagonal elements of VCKM. We

then analyze simple cases where the off-diagonal elements are allowed to be large. We find

in the former cases that some small GIM suppression is necessary to satisfy experimental

constraints. In the large mixing scenarios, a strong GIM suppression is necessary to avoid

large contributions, and the T-odd fermion spectrum must be nearly degenerate.

6.1 Near the diagonal

The littlest Higgs model is an effective field theory valid at most to the scale 4πf . As such,

there is no reason to suspect that one particular texture is favored over another. However,

if we begin from a basis where the T-odd Dirac masses are diagonal, this leads to the
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relations VHu = Vu, and VHd = Vd. From this relation, it is clear that, in this basis, all

of the flavor and CP violating amplitudes arise as a result of the Yukawa couplings which

give mass to the SM fermions.

Now the CKM matrix is given by VCKM = V †
u Vd. From this relation, it is clear that

Vu and Vd cannot simultaneously be set to the identity. In this section, we assume that

both Vu and Vd are nearly equal to the identity matrix. This is equivalent to assuming that

there is an alignment mechanism between the T-odd masses and the SM Yukawa structure.

This assumption provides us with a set of minimal mixing scenarios. We take as examples

two simple cases:

• Case I VHu = 1, VHd = VCKM

• Case II VHd = 1, VHu = V †
CKM

In each of these scenarios, the only parameters relevant to neutral meson mixing are the

mass eigenvalues of the T-odd fermions. In the first setup, the D system is unaffected, and

all constraints arise from neutral K and B mixing. In the second, there is no mixing in the

down type gauge and Goldstone boson interactions, and thus there are no contributions at

one loop order in the K and B systems. Instead, the D system gives the only constraints.

The one feature that these scenarios both share is a relative suppression mechanism

that is borrowed from the SM CKM texture. The smallness of V ub
CKM and V td

CKM ensure

that the neutral meson mixing amplitudes will be nearly independent of the mass of the

third generation T-odd fermions. The constraints will primarily be on the masses of the

first two generations of T-odd fermions, because of the relatively larger values of V us
CKM and

V cd
CKM.

In finding the bounds on the mass eigenvalues of the T-odd fermion sector for a par-

ticular texture, we require that, for Bd and K mixing, the contribution from the T-odd

fermions not exceed 30% of the SM contribution to the mass splittings and εK . This is

roughly when the new physics contributions begin to exceed the long distance uncertain-

ties associated with the SM predictions for these observables. We note that this process

eliminates the dependance on the bag parameters, which have rather large theoretical un-

certainties. In the D system, there is only an experimental upper bound on the mass

splitting, and the SM short distance contribution is very small compared with this bound.

Thus, for the D system we only require that the T-odd fermion contributions not exceed

this experimental upper bound. For every scenario, we hold the symmetry breaking scale

f fixed at f = 1000 GeV. The contributions from new physics simply scale as 1/f2, so

these results can easily be extended to other values of the breaking scale. In each plot, the

horizontal axis is the ratio ∆m12/m12 = 2(m2 −m1)/(m1 + m2), where m12 is the average

mass of the first two generations, and ∆m12 is the splitting m2 −m1. On the vertical axes

we plot the dependence on the mass of the third generation T-odd quark doublet.

In figure 3, we show the constraints on the mass splitting of the first two generations of

T-odd fermions as a function of the mass of the third generation T-odd doublet. The regions

of parameter space where the new physics contributions are smaller than the approximate

long distance uncertainties in the SM contributions lie inside the shown contours. In this
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Figure 3: Case I f = 1000 GeV: In these plots, VHd = VCKM. In order of the dark-

est contours to lightest, the average mass of the first two generations varies through m12 =

500, 1000, 2000, 3000 GeV. The D system imposes no constraints in this scenario.

scenario the up-type CKM, VHu, is diagonal, and thus D0−D̄0 mixing has no contributions

from new physics. The features in the plot that cause the narrowing of the internal regions

as m3 varies away from m12 are due to the influence of the εK observable. If the CP

violating phase δd
13 is set to zero, the contours are nearly vertical.

In figure 4, we set instead the down-type Yukawa interactions to be diagonal. As

mentioned, the constraints in this region come only from the D system mass splitting.

There are essentially no constraints on the mass of the third generation T-odd doublet.

The degeneracy required in the first two generations is quite relaxed, now varying between

50 and 10% as the average mass m12 is increased. We note, however, that this would change

as the experimental bounds on the D meson mass splitting are improved. For example, if

the bound on the mass splitting comes down by a factor of ten, the required degeneracy

between the first two generations of T-odd fermions then varies between about 16 and 4%

as m12 varies between 500 and 3000 GeV.

6.2 Going away from the diagonal

As mentioned, another possibility for the textures is to have large off diagonal elements

in VHd. There is no reason to assume that there is an alignment between the T-odd

mass textures and the SM Yukawa couplings. We note that this requires that there are

also, simultaneously, large off diagonal elements in VHu which must cancel in the relation

V †
HuVHd = V †

u VHV †
HVd = VCKM. This is easy to realize in a natural way if most of this

mixing comes in through the T-odd Yukawa textures.

In this section, we study the corrections that arise when the angles sd
ij in eq. (3.11) are

taken to be large. In these cases, we find that not only is a degeneracy required between
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Figure 4: Case II f = 1000 GeV: In this plot, we show the results for the case where VHd = 1.

Again, from darkest to lightest, the average mass of the first two generations increases as m12 =

500, 1000, 2000, 3000 GeV. In this scenario, only the D system is affected, and so the contours

correspond to the points at which the T-odd fermion contributions exceed the experimental upper

bounds.

the first two generations, but the entire flavor spectrum of the T-odd vector-like quarks

must often be degenerate. We consider four scenarios:

• Case IIIa sd
13 = 0.5, δd

13 = δSM
13 , sd

ij = sSM
ij otherwise.

• Case IIIb sd
13 = 0.5, δd

13 = 0, sd
ij = sSM

ij otherwise

• Case IVa sd
13 = 0.5, sd

12 = 0.7, sd
23 = 0.4, δd

13 = δSM
13

• Case IVb sd
13 = 0.5, sd

12 = 0.7, sd
23 = 0.4, δd

13 = 0

In cases IIIa and IIIb, we allow one of the angles to be large. We pick specifically sd
13 to

be large, as it is this angle to which the third generation mass dependence is sensitive. As

εK is a strong factor in the analysis, we look at the case where it receives no contributions

by setting δd
13 to zero, relegating all new CP violation to the up-type quark interactions.

In cases Va and Vb, we chose some order one values for the three mixing angles, and again

look at cases where the new CP violating phase is either all in the down-type, or all in the

up-type quark interactions.

In figure 5, we show the constraints on the masses in this case where sd
13 is large. A

large sd
13 implies order one contributions to V 3d

Hd and V 1b
Hd. It is clear from this figure that a

degeneracy is now required in all three generations of T-odd fermions. For a generic choice

of order one mixing angles, it is expected that such a universally degenerate spectrum is

required. We show the results when the CP violating phase is set both to the SM value,
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Figure 5: Case III f = 1000 GeV: In this plot, the angle sd
13 = 0.5, while the other angles

are equal to the SM CKM angles. The contributions from new physics are generally much larger,

and thus a stronger GIM suppression is necessary. The contours, from darkest to lightest, are for

m12 = 500, 1000, 2000, 3000 GeV. In the plot on the left, δd
13 = δSM

13 = 1.05, while on the right this

phase is set to zero.

δd
13 = 1.05, and to δd

13 = 0. The dramatic difference between these two types of scenarios

indicates the severe sensitivity of the εK observable to new flavor physics.

In figure 6, we take all of the mixing angles to be somewhat large. We find that this

scenario is far more constrained then all the others if the phase δd
13 = δSM

13 . There are

some narrow windows where degeneracies of up to 10% are allowed, but the majority of

the parameter space where corrections are small is in the 1% range. However, when the

angle δd
13 is taken to be small, it happens that there is a cancellation in V 3d

Hd, such that the

third generation mass m3 is relatively unconstrained.

6.3 Bs mixing

Of all the scenarios that we have considered so far, Bs mixing is not strongly affected if

the T-odd fermion spectrum is constrained such that the new physics contributions to K,

Bd, and D mixing do not exceed the bounds that we impose. However, there may be some

special choices of textures that we have not considered that only strongly modify the Bs

system. It is well known that this can occur in supersymmetry [12]. With this in mind, we

have identified a texture that does not significantly affect K and Bd mixing, but which is

able to enhance Bs mixing. A simple set of angles that achieves this is

• Case V sd
23 = 1/

√
2, sd

12 = 0, sd
13 = 0, δd

13 = 0.

The constraints from the other neutral meson systems are very weak here. It is primarily

the D system which restricts the allowed parameter space. In this scenario, by varying the
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Figure 6: Case IV f = 1000 GeV: In this plot, all of the angles are taken to be somewhat

large: sd
12 = 0.5, sd

13 = 0.7, sd
23 = 0.4. The contours, from darkest to lightest, are for m12 =

500, 1000, 2000, 3000 GeV. In the plot on the left, δd
13 = δSM

13 = 1.05, while on the right this phase

is set to zero. In the plot on the right, the required degeneracy in the third generation is relaxed.

T-odd fermion masses within the allowed contours, the mass splitting in the Bs system

can be enhanced by as much as a factor of 12.3 The constraints, along with a plot where

we show the enhancement of the Bs mass splitting for fixed m12 = 3000 GeV are shown in

figure 7. It is interesting to note that the degeneracy required in the first two generations

of T-odd fermions is more or less completely relaxed. We emphasize that we have not

performed an exhaustive search, and it is possible that there are other textures where the

allowed enhancement of Bs mixing is even larger.

7. Conclusions

Little Higgs models with T-parity necessarily introduce new mirror fermions in order to cut

off UV sensitive contributions to four-fermion contact operators that are constrained pri-

marily by studies at LEP. These fermions introduce a new flavor structure to the model, and

lead to new tree level flavor changing currents involving SM fermions and mirror fermions.

We have done a first exploratory study of this flavor structure, and found constraints on

the mirror fermion mass spectrum from a one loop analysis of neutral meson mixing. We

have noted that it is not possible to adjust all of the new flavor structure to be completely

diagonal, due to relations with the CKM mixing already present in the SM.

For order one mixing parameters, we find that the mirror fermion mass spectrum must

be degenerate to within a few percent or less. If the new mixing parameters are taken to

be small, then this is significantly relaxed. In particular, if all mixing is relegated to the

3We are especially grateful to Matthias Neubert for suggesting that such a scenario is possible.
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Figure 7: Case V f = 1000 GeV: In these plots, the angle sd
23 = 1/

√
2, while the other angles

are set to zero. In the plot on the left, the contours, from darkest to lightest, are for m12 =

500, 1000, 2000, 3000 GeV, and show the constraints from the K, Bd, and D systems. In the plot on

the right, we overlap the constraint contour for m12 = 3000 GeV with a plot of the enhancement in

the Bs mass splitting relative to the SM contribution. From darkest to lightest, this enhancement

is a factor of 2, 4, 6, 8, 10, and 12, respectively.

up-type quark interactions, only D mixing is affected, and a degeneracy of only 50% or so

is required between the first two generations of T-odd fermions. We note that improved

experimental constraints on the D meson mass splitting could significantly restrict such

scenarios. We have found that the εK observable plays a significant role in the fits if there

is a CP violating phase in VHd.

We have also studied the Bs system, identifying a scenario in which B0
s −B̄0

s mixing can

differ substantially from the SM prediction while still satisfying constraints on the other

neutral meson mixing observables. In the setup we have considered, the enhancement of

the mass splitting can be as large as a factor of 12. Such scenarios are of particular interest

for experimental studies of the Bs system. Also, in this scenario, the constraints on the

first two generations are much more relaxed than in the others considered.

We wish to make clear that little Higgs models with T-parity are not ruled out in any

way by this study. This analysis should instead serve as a guide to what properties any UV

completion of this structure should have. This is in close analogy with studies of the super-

symmetric flavor problem, which have been an essential tool in constructing mechanisms

of supersymmetry breaking which are consistent with low energy phenomenology.

We note that this is only an introduction to the flavor physics of this model. There

are many other observables which are sensitive to this flavor structure, such as rare de-

cays and lepton flavor violating processes. Including rare decay processes in an analysis

would possibly require a closer degeneracy in the mass spectrum, although this needs to
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be checked. In addition, we have assumed that the SM CKM fit is unchanged, when in

fact additional contributions to observables (especially εK) can change the best fit values

of the CKM elements. A full global analysis would remedy this situation, however many

more observables must be computed and included to render such a fit meaningful.

Acknowledgments

We would like to thank Enrico Lunghi, Patrick Meade, Matthias Neubert, and Maxim

Perelstein for helpful discussions and suggestions during the preparation of this manuscript.

We also thank Andrzej Buras and Andreas Weiler for pointing out some typographical

errors. J.H. is supported by the U.S. Department of Energy under grant DE-AC02-

76CH03000. S.J.L. and G.P. are supported in part by the National Science Foundation

under grant PHY-0355005.

Note added in proof. During the refereeing process, D0 and CDF have released exper-

imental results on the Bs mass splitting which are in agreement with the SM prediction.

This will add additional constraints to our analysis which we will address in a future pub-

lication.

A. Box functions and Feynman rules

The gauge and Yukawa interactions of the littlest Higgs model with T-parity lead to tree

level flavor changing currents which can, at one loop, affect SM observables such as neutral

meson mixing. After identifying the mass eigenstates, the Lagrangian can be expanded,

leading to the relevant Feynman rules. These rules are given in table 1. While the conjugate

interactions are not shown explicitly, they are easily derived. One should note that the

Yukawa type interactions with the eaten Goldstone bosons do not have an i prefactor.

Because of this, the associated conjugate Feynman rules have an additional minus sign.

The functions resulting from evaluation of the box diagrams are given by

F (yi, yj ;WH) =
1

(1 − yi)(1 − yj)

(
1 − 7

4
yiyj

)
+

y2
i log yi

(yi − yj)(1 − yi)2

(
1 − 2yj +

yiyj

4

)

−
y2

j log yj

(yi − yj)(1 − yj)2

(
1 − 2yi +

yiyj

4

)

G(zi, zj ;ZH) = −3

4

[
1

(1 − zi)(1 − zj)
+

z2
i log zi

(zi − zj)(1 − zi)2
−

z2
j log zj

(zi − zj)(1 − zj)2

]

A1(zi, zj ;ZH) = − 3

100a

[
1

(1 − z′i)(1 − z′j)
+

z′izi log z′i
(zi − zj)(1 − z′i)

2
−

z′jzj log z′j
(zi − zj)(1 − z′j)

2

]

A2(zi, zj ;ZH) = − 3

10

[
log a

(a − 1)(1 − z′i)(1 − z′j)
+

z2
i log zi

(zi − zj)(1 − zi)(1 − z′i)

−
z2
j log zj

(zi − zj)(1 − zj)(1 − z′j)

]
,
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Particles Vertices Particles Vertices

ūHiW
+µ
H dj i g√

2
(VHd)

i
jγ

µPL d̄HiW
−µ
H uj i g√

2
(VHu)ijγ

µPL

ūHiZ
µ
Huj ig

2 (VHu)ijγ
µPL d̄HiZ

µ
Hdj −ig

2 (VHd)
i
jγ

µPL

ūHiA
µ
Huj −i g′

10(VHu)ijγ
µPL d̄HiA

µ
Hdj −i g′

10(VHd)
i
jγ

µPL

ūHid
jω+ − 1√

2f
Mui

H
(VHd)

i
jPL d̄Hiu

jω− − 1√
2f

Mdi
H

(VHu)ijPL

ūHiu
jw3 − 1

2f Mui
H

(VHu)ijPL d̄Hiω3d
j 1

2f Mdi
H

(VHd)
i
jPL

ūHiu
jη 1√

20f
Mui

H
(VHu)ijPL d̄Hid

jη 1√
20f

Mdi
H

(VHd)
i
jPL

ν̄HiW
+µ
H ej i g√

2
(VHe)

i
jγ

µPL ēHiW
−µ
H νj i g√

2
(VHν)

i
jγ

µPL

ν̄HiZ
µ
Hνj ig

2 (VHν)ijγ
µPL ēHiZ

µ
Hej −ig

2 (VHe)
i
jγ

µPL

ν̄HiA
µ
Hνj i g′

10 (VHν)
i
jγ

µPL ēHiA
µ
Hej i g′

10 (VHe)
i
jγ

µPL

ν̄Hie
jω+ − 1√

2f
Mνi

H
(VHe)

i
jPL ēHiν

jω− − 1√
2f

Mei
H

(VHν)
i
jPL

ν̄Hiν
jw3 − 1

2f Mνi
H

(VHν)ijPL ēHiω3e
j 1

2f Mei
H

(VHe)
i
jPL

ν̄Hiν
jη 1√

20f
Mνi

H
(VHν)

i
jPL ēHie

jη 1√
20f

Mei
H

(VHe)
i
jPL

Table 1: This table contains the Feynman rules relevant to flavor changing physics. The conjugate

interactions are not included, but can easily be derived from the listed expressions.

(A.1)

where a = M2
ZH

/M2
AH

≈ 5/ tan2 θw, and z′i = azi. The function F contains the contribu-

tions from the charged T-odd scalars and gauge bosons, while G contains the contributions

involving two ZH propagators. A1 contains the contributions from diagrams with two AH

propagators, while A2 contains the contributions from diagrams with both a ZH and an

AH propagator running in the loop.

We note that in unitary gauge the expression for the F function is not the same, and

in fact contains divergent terms. These cancel when the sum over flavors running in the

box diagrams is performed, and unitarity of the mixing matrices is imposed. It is only

after this summation that the calculations in the two different gauges can be compared. In

contrast, the G, A1, and A2 functions which correspond to neutral current contributions

are already gauge invariant.
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